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The dynamics of turbulent velocity fluctuations in and somewhat outside the 
viscous sublayer are examined by linearizing the equations of motion around the 
known mean velocity profile. The rest of the boundary layer is assumed to drive 
the motion in the layer by means of a fluctuating pressure which is independent 
of distance from the wall. The equations, which are boundary-layer approxima- 
tions to the Om-Sommerfeld equations, are thus treated as a non-homogeneous 
system and solved by convergent power series. The solutions which exhibit the 
strong role of viscosity throughout the layer considered provide a model endowed 
with many of the known features of turbulence near a wall. In  particular, the 
phase angle between streamwise and normal fluctuations is found to be in 
plausible agreement with experiments. An important role is ascribed by the 
solutions to the displacement of the mean velocity by the normal fluctuations. 
The impedance of the layer is found to be anisotropic in that it favours fluctua- 
tions with a much larger scale in the streamwise than in the spanwise direction. 
For such disturbances, the ratio of turbulent intensity to the intensity of the 
pressure fluctuations approximates the experimental ratio. According to the 
solutions it is primarily the spanwise component of the pressure gradient which 
is responsible for the intense level of turbulence very near the wall. The model 
apparently underestimates the amplitude ratio of normal to streamwise com- 
ponents of the velocity. 

1. Introduction 
Turbulent boundary layers are shear flows for which the presence of a solid 

boundary inhibits the turbulent motion in its immediate vicinity. The impervious 
wall and the no-slip condition insure that all components of the velocity vector 
vanish at the boundary and that the normal derivative of the normal component 
vanish there also. Nevertheless, it  is an astonishing, though well-known fact that 
turbulence reaches a peak of intensity at a distance from the wall which does not 
exceed 2 %  of the boundary-layer thickness and which for high Reynolds 
numbers is far smaller than this value. 

An interesting description has been given by Lighthill (1963) of the probable 
manner in which the vorticity of the mean flow is able to reach a very large and 
sharp peak at  the wall and to combat the smoothing influence of diffusion. 
Lighthill appeals to the three-dimensional nature of the fluctuations and suggests 
that the wall correlates inflow normal to it with spanwise stretching which causes 
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the mean vorticity (directed spanwise) to be intensified while it is convected 
inward and weakened while it is transported outward. It is perhaps worth noting 
that almost any disturbance whose down-stream gradients are small next t o  its 
cross-stream gradients has this property if it satisfies continuity, whether it is 
dynamically possible or not. The burden of a dynamic model is to exhibit the 
phenomenon with sufficient quantitative accuracy and to account for the way in 
which a temporary increase in vorticity is contributed by the downward motion 
of the fluid particles or equivalently to produce large positive Reynolds stresses 
in the proximity of the wall. 

Consider a two-dimensional incompressible turbulent boundary layer which is 
statistically stationary and adjacent to a plane, rigid and smooth wall. Decom- 
pose the velocity vector and the pressure into a time-independent and a time- 
dependent part Q = (QP, 0) + q(r, t) = U(r) + u(r, t ) ,  

w - 9  t) = (P) +PP, t ) ,  

where the brackets denote time averages. In  Cartesian co-ordinates, the equations 
of motion can be written 

aU, 
- = 0, 
axi 

where 7ii = p((uiui) - uiui), v is the kinematic viscosity, p the constant density. 
Let x and z be the components of r in the downstream and spanwise directions 
and y the component normal to the wall. The corresponding mean and time- 
dependent velocity components are (U,u), (0,w) and ( K v )  respectively. It is 
known that throughout a layer extending from the wall to a distance y which 
includes roughly 15 % of the boundary-layer thickness (we will deal only with 
a region next to the wall which is far thinner) the law of the wall 

Ulu, = f (YUTlV) 

applies. Here u, is the friction velocity (r/p)*, where 7ul is the wall shear stress. 
An easily derived consequence of this empirical generalization is that 

For a wide range of Reynolds numbers (Schlichting 1960) one finds that 

~ _ _  d 1 
ax (log U , X / V - O - ~ ~ ) X ’  
- logu, = 

where xis the apparent origin of the boundary layer. Thus for turbulent Reynolds 
numbers (say U,x/v > 5 x lo5) 

d 1 
ax 5x’ 
-logu, < - 

v/u < 2 x 10-5, 

while, say for yu,/v < 100, ylx < lo-*, hence 
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while vlU is two or three orders of magnitude larger. We shall therefore neglect 
V au,/ay in (1 a )  and assume statistical homogeneity within planes parallel to the 
wall. The equations of motion in component form are thus 

au av aw 
ax ay a2 
-+-+- = 0. 

Since at  the wall, y = 0, U = u = v = w = av/ay = 0, as y + 0 all quadratic terms 
are of higher order in y than the linear terms so that there must be a small region 
near the wall within which the asymptotic form of (2) is 

Unfortunately the layer within which (3) is adequate turns out to be too thin for 
our purpose: (3) assumes that a/at B Qi a/axi, whereas a/at is of order Uo/h, where 
Uo is a characteristic velocity and h a characteristic length for velocity gradients. 
Thus the assumption restricts us to a part of the flow wherein Qi < Uo and it is not 
suitable to investigate a region wherein, for instance, u reaches a maximum 
amplitude and U exceeds +Urn. A characteristic weakness of (3) is that it  over- 
estimates greatly the forces required to give rise to an apparent (local) accelera- 
tion. Thus the solutions of (3) given by Sternberg (1962) suggest a ratio of 
longitudinal pressure gradient to (downstream) velocity fluctuation amplitude 
which is excessively large. Another, related weakness of these solutions is that 
since the term v aU/ay, which represents thenormal transport of mean momentum, 
is omitted, the basic mechanism which, one suspects, correlates normal and 
downstream velocity fluctuations of opposite signs and thus generates Reynolds 
stresses is absent so that the solutions fail to provide a mechanism by which a 
large mean vorticity gradient is maintained near the wall and by which the turbu- 
lence extracts energy from the mean flow. By allowing only vorticity diffusion to 
take place, (3) thus confines the role of the wall layer to that of a viscous damper. 
The models of Einstein & Li (1956), of Hanratty (1956) and of Sternberg (1962) 
were based on (3). The first two considered an intermittent layer whose growth 
in time by diffusion is interrupted by some kind of instability which brings the 
turbulent region into intimate contact with the wall after which the layer grows 
again, while Sternberg examined the behaviour of such a layer when it is con- 
tinually excited by fluctuations at  its outer edge. It is possible to consider a less 
radical type of linearization, that which consists in neglecting the right-hand side 
of (2) only. Such an approximation is also non-uniformly valid in that the relative 
importance of the neglected terms grows with the distance from the wall but as 
will be seen after the dynamics of the linear model have been clarified, it is likely 
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to fail only for values of yuJu which are substantially greater than those associ- 
ated with the viscous sublayer. 

It is apparent that while solutions of ( 2 )  are statistically stationary, solutions 
of the simpler homogeneous system obtained by eliminating the pressure and 
deleting the non-linear terms (the right-hand side of ( 2 ) )  may not be. If U is 
assumed given, we may view these terms as forcing terms which trigger damped 
or growing oscillations of the linear system. A treatment along these lines has 
recently been summarized by Landahl(l965). All the eigenfunctions of the linear 
homogeneous system turn out to be stable and the space-time covariance of the 
pressure is analysed by assuming that the structure of the flow is governed by that 
of the least stable of the eigenfunctions, the non-linear terms affecting essentially 
only the amplitude of the solutions. 

The approach used here resembles that of Landahl in that i t  omits the non- 
linear terms arij/axj. It differs from his in that the formulation is not that of an 
eigenvalue problem solved throughout the boundary layer but that of a forced 
oscillation solved in a limited region near the wall. A similar treatment by 
Sternberg (1965) appeared after the present work was completed. It is discussed 
later on. 

It is possible, as we shall see, to provide for the coupling with the outer flow 
without specifying outer boundary conditions which would prejudice the solu- 
tion, i.e. which dictate either the location of the outer boundary (up to which 
linear approximations need be valid) or numerical values of the solution on that 
boundary. This is done by using the fluctuating pressure as the coupling variable. 

2. The character of the pressure field near the wall 
It has been shown (Corcos 1964) that the turbulent pressure fluctuations near 

the wall have two properties which will be used presently. 
The first is that they are essentially independent of the normal co-ordinate y 

over a region 0 < y < yo such that yo is substantially greater than the sublayer 
thickness. yo naturally depends on the spatial scale of the pressure disturbances. 
In  a partial Fourier decomposition of the field in which the wave-number 
k = ( I c z ,  JC,) corresponds to the position vector ro = (x, z) ,  yo must be such that 
ky, < 1, the deviation from uniformity with y being equal to where k = I kl. 
For a laboratory boundary layer where the Reynolds number, based on displace- 
ment thickness, R e  &* = 5 x lo4 and where Tlw/u7 = 30, the pressure energy 
spectrum, is found for I%&* < 20, it  is possible to assume invariance of p with y 
with generally sufficient accuracy. For instance, since 

the maximum error is 4 yo, i.e. 

Icy < 0.2 for k&* = 1.0 and your/u = 330 

and for k&* = 10.0 and youJv = 33. 
At higher Reynolds numbers, the approximation is valid (at the same value of 
k&*) for larger values of yo uJu .  
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The second property of the turbulent pressure near or at  the wall is that it is 
related to velocity fluctuations which are not confined within the region we pro- 
pose to study (say yu,/v < 50). Evaluations of the covariance of the pressure at  
the wall in terms of the distribution of corresponding statistical functions of the 
velocity fluctuations have been made, using the integral relations corresponding 
to the Poisson equation for the pressure. In  these evaluations, the integrand was 
either provided by a model of the velocity field (Lilley 1963) or by statistical 
measurements (Corcos 1964) and while the results did not agree in all respects, 
they suggested strongly that the sources of pressure spread over a region with 
thickness of order 103v/u, and that the contribution of the inner tenth of that 
region is not considerable. In  other words, at  least in a coarse sense, one may view 
the turbulent pressure in the neighbourhood of the wall as the result of turbulence 
outside this thin layer and as driving the velocity fluctuations within it. This point 
of view suggests that we determine the velocity field in the wall layer in terms of 
a pressure field which is assumed given (and which may well be due to the non- 
linear dynamics outside the layer). We shall also assume the mean velocity profile 
as given and inquire later whether the computed fluctuating velocity field permits 
such a velocity profile to be maintained. 

3. Equations 
As a consequence of the approximate invariance of p with y in the thin wall 

layer we are entitled to use a boundary-layer form of the equations of motion. To 
the same approximation, viscous diffusion along the boundary may be omitted. 
The linear equations a.re then: 

au au au 1 ap azu - + u - + v -  = ---+v- 
at ax ay p a x  a g 7 \  

J au av aw 
ax ay az 
-+-+- = 0. 

We then consider the fluctuating velocities and pressures to be a superposition of 
elementary disturbances whose amplitudes are functions of y ,  kz ,  kz and w and 
whose phases are given by exp i ( k zx  + kzz + wt)  where w is the circular frequency. 
Define the phase velocity V, of the disturbances as U, = - w]kz, and the complex 
amplitudes of the elementary disturbances by @, ii, v", 65. (13 is chosen as real.) 
The equations of motion become 
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where jj = jjwall = a real constant. These equations (the boundary-layer approxi- 
mations to the Orr-Sommerfeld equations) are to be treated here as non- 
homogeneous equations, the pressure fluctuation providing the driving force for 
the system. An equivalent set of equations which turns out to be somewhat more 
convenient to solve is obtained by eliminating the pressure : 

d4v" ikz d2v" ik d2U 
dy4-u dy2 v dy2 

( U - - U e ) - + ~ - v "  = 0, 

4. Boundary conditions 
At the wall, y = 0 : 8 = ij = = 0. Also, ( 5 )  yields: 

We thus have three boundary conditions for the fourth-order v equation and two 
for the third-order w equation. The two additional conditions are provided as 
follows: it seems natural to require that the effect of viscosity does not dominate 
the solutions as y -+ co. It can be anticipated that v" and 8 may be obtained from 
the superposition of linearly independent solutions of (6) (four for v", three for 8). 
One solution for each component increases asymptotically with y as an expo- 
nential involving the viscosity coefficient and whose real part is positive. Such 
solutions should be rejected but the manner in which it should be done is perhaps 
best seen after the role of the critical point has been discussed. 

5. The critical point 
It is known from stability theory that viscosity plays a predominant role in 

determining the solutions of (6) in two regions: near the wall, and in the 
neighbourhood of the so-called critical point, the value ye of y, if any, for which 
U = - w/k,. These regions are broader than they are usually in laminar stability 
theory, so that inviscid approximations are not justified anywhere in the region 
of interest and will not be used. One might conceive the proper solution of (6) as 
that which satisfies the wall-boundary conditions and for which, as y > ye, the con- 
tribution from the exponentially increasing viscous solution would be excluded. 
If we considered the linear approximation (6) to be as valid far from the wall as 
it is near the wall, this would indeed be the only possible point of view. But it is 
known that a typical turbulent component of a, given frequency travels down- 
stream a t  a wave velocity such that ycuT/v > 100, so that the outer boundary 
condition would have to be applied in a region where (as is shown later) non- 
linear terms are almost sure to render (6) quite inaccurate. It thus seems prefer- 
able to forego a solution which extends beyond the critical point and merely 
select the combination of solutions for which the effect of viscosity decreases 
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fastest as y increases. This selection is dictated by the belief, generally held, that 
the effect of viscosity upon the fluctuating velocity field is small for yu,/v > 40. 

In  order to solve (6) analytically it is expedient to approximate the velocity 
profile in the inner region (say yu7/v 6 50) by the simple form 

It is compared in table 1 with the law of the wall, according to a careful study of 
experimental results by Coles (1953). The value of ,8 chosen is 16.0. 

Y W  
0 
2 
4 
6 
8 

10 
20 
40 
60 
80 

100 

u/u, = P [ l - q (  -?)I 
0 
1.88 
3.54 
5.00 
6.30 
7.44 

11.42 
14.69 
15-62 
15.89 
15.97 

TABLE 1 

Law of 
wall 
0 
1.96 
3.80 
5.45 
6.87 
8.05 

11.49 
14.22 
15.33 
16.04 
16.60 

6. The solutions for the exponential mean velocity proiile 
If the mean velocity is given by (7), the transformation 

y = exp - (Y%lPV) 
casts the interval 0 < y < 00 into the interval 1 2 Y > 0 and it becomes a simple 
matter to examine the asymptotic behaviour of the linearly independent solu- 
tions for large y. Define 

The four independent solutions of G are found to be a polynomial and three 
absolutely convergent power series, i.e. : 

y = 1 - uc/pu,; DL = ~ ~ v p 3 / u T .  

(a) y 1+- -Y ,  ( b) 

where 
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where 7 = (iay)g. 7 is chosen to have a positive real part and 
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(d )  the series obtained from (c) above but with 7 replaced everywhere by - 7. 
A similar approach leads to three independent solutions for 13, i.e. : 

m 

Y 
*-' 1 + in2lay' 

where c,, = 1 and for n B 1, c, = c 

m 

- ,ia 
where do = 1 and for n k 1, d, = d,+, 

(7 + n)2- iay ' 
(c) the series obtained from ( b )  above by replacing 7 everywhere by -7.  Both 

solutions ( d )  for D and (c) for w diverge exponentially as y -+ 00 and they will be 
discarded in accordance with our outer boundary conditions. 

The foregoing solutions were derived under the restriction UJur + p. The 
solutions for UJu, = ,8 are of little interest since one value of ,8 has no more 
physical significance than a iieighbouring one. 

7. The inviscid limit 
The inviscid version of equations (5) is 

It is of interest to compare the solutions of these equations with the solutions we 
have obtained, in order to establish in what sense the effect of viscosity becomes 
small as y grows large. The former can be written explicitly and in finite form for 
exponential mean velocity profile, but for purposes of comparison it is preferable 
to work with the two linearly independent solutions of the inviscid equation for v", 

Those are 

(a') y-  Y ,  and 

(b') -y+ln Y(Y-P)+(P-  Y)log( t -yT Y ) .  

The first two solutions of the complete equations for v" are those related to these 
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inviscid solutions. They are found to tend to the latter as ay+oot if Y < IyI. 
The second condition is required for the expansion 

OD Y" 
log 1-- = -  - ( 3 n=lnyn 

if we take the argument of the logarithm to be positive. Solution (a )  for v" tends 
to (a') above for all values of y as lay]  becomes large. However solution (b)  con- 
verges for all values of y because the parameter ay is finite. Thus in order for (b )  
to approach its inviscid counterpart (b'), the convergence must be essentially 
complete for values of n smaller than that for which ( 1  + inZ/ay) is significantly 
different from unity. This requires that lay1 be large and that y be large enough 
so that Y < The latter requirement is equivalent to 

and implies that no matter how large layl,  (b)  does not tend to (b') near the wall. 
Finally, the third (viscous) solution decays as yu,/v increases, as indicated by 
the factor 

In  this connexion, it should be noted that the thickness of the viscous inner layer 
is large, primarily because the coefficient of the second-order term for v" (or of the 
first-order term for 8), rapidly decreases as y increases. This is a consequence of 
the very abrupt rise in the mean velocity near the wall. For instance, assume 
a laboratory layer for which b*u,/v = 1600 and choose p = 16, U, = 20uT and 
k,6* = 1.0. For this case, the exponential factor for the viscous solution of (3) 
(equations which omit mean convection) is yuT/5.7v, while the exponential factor 
for the profile chosen above is yu,/28v. 

It is thus seen that the solution of equations (6) tends to the solution of the 
inviscid equations under well-defined conditions, which have just been given, but 
that for the range of wave numbers which is relevant to turbulence, this tendency 
is weak enough so that for all but the shortest wavelengths, the effect of viscosity 
permeates the layer yu,/v < 50. 

8. Calculation of the solutions 
Numerical solutions of (6) have been obtained by combining linearly the first 

three fundamental solutions for v" so that their sum satisfies the boundary condi- 
tions at  the wall. The same is done for the first two fundamental solutions of 8. 
The series are summed with the aid of an I.B.M. 7090 computer. They are found 

t At first sight it may seem paradoxical that cry -+ cc is an inviscid limit since it can be 
obtained by letting v + co. But the reader should keep in mind that for the mean flow a 
viscous length is proportional to v while for a disturbance it is only proportional to v* 
according to the linearized equations. The limit above is then a proper inviscid limit for the 
disturbance in law of the wall co-ordinates. 
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to converge rapidly enough and the accuracy of the machine is not taxed unless 
the parameter ay is excessively large. The program was able to generate thirty 
terms for each series, but only rarely were more than ten or fifteen terms 
required. The computation yields for chosen values of kx, kz and w, the complex 
functions G, v", 8, G - 8 and the Reynolds stresses - {W(G) W(v") + 4(G)  4(v")} 
where W and 4 are the real and imaginary parts respectively. 

9. The parameter k, 
Given the solutions for a chosen value of kx and w, and a non-zero value of kz, 

the solutions for any other value of kz are immediately accessible. 
Let two such cases be denoted by the subscripts 1 and 2. The homogeneous 

equations for v" and fi, equations (6), are independent of kz, so that the funda- 
mental solutions for these velocity components must be the same. The value of kz 
only affects the boundary conditions. The inhomogeneous boundary condition on 
v" requires that 

and that for 8 leads to fiZ/Gl = (kZ)Z/(kZ)l. (10)  

Finally, from the continuity equation, we find that 

From relations (9) and (10)  one notes that by changing the value of kz (kx and w 
remaining fixed) one merely multiplies solutions for v" and 8 by a constant real 
factor, so that the phase of v" and fi with respect to j3 at any y is independent of FC,. 
It is also apparent that the amplitude of v" and 8 increases with ka. 

The numerical solutions were all obtained for ka = kx, for the reason that the 
difference between the functions 6 and fi is for this case entirely due to the term 
v" d U / d y  in (6), i.e. to the normal transport of mean momentum by the fluctuating 
velocity component v". If we now choose (kJ1  = kx and define (&), = kz, we find 

P a )  
that when kz/kx Q 1,  

v"Jv"1 = *{1+ (kz/kx)2} - 8, 
8,/G1 = k#/kX -+ 0, (12b)  

Q, N +(GI+Gl), (12c)  

v",/v"l + ( k Z P X P ,  P 3 a )  

(13b)  

fiZ/Gl = kz/kx. (13 4 

while when kJkX B 1, 

G, = &[(ill + w1) + (kz/k,)2 (GI - 81)] - +(kz/kx)2 (GI - G1), 

Thus S / G  disappears in both limits kz/k,-+O and k z / k , + a .  Note also that for 
wave-number vectors which have a predominant component in the spanwise 
direction (disturbances which are highly elongated in the downstream direction), 
the downstream component is proportional to the difference between GI and fil 
(components for kz = kx). This result has both a simple physical explanation and 
important consequences which will be discussed later. 
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10. The pressure field 
The solutions which have been computed are functions of the normal distance 

y* = yu,/v for arbitrary choices of the frequency w and of the wave-number 
k = (kz, ks). These functions (e.g. 4, 6, a) are generalized Fourier transforms of 
the random velocity components u, v, w, non-dimensionalized by the driving 
pressure amplitude f3 (the Fourier transform of the fluctuating pressure), by the 
density and by the friction velocity u,. Their real part denotes that part which is 
in phase with the pressure, their imaginary part, that part which is &r radians out 
of phase with it. 

If the three-dimensional spectrum II (kz, IC,, w )  of the wall pressure were suffici- 
ently well known from experiments, it would be possible to construct from the 
elementary solutions, the three-dimensional spectrum of the velocity components 
and, by integration, the mean square of these components. For instance, since 

p2u:E,/IT(k,w) = G(k, W)G*(k,W), 

where a star denotes a complex conjugate and the brackets an ensemble average, 
and where 42 = p4u7/fi. 

We summarize here some of the pertinent results of observations concerning 
the turbulent pressure. 

For two-dimensional turbulent boundary layers in the absence of mean 
pressure gradients, numerous experiments indicate (see, for example, Corcos 
1964) that the root mean square of the pressure intensity at  the wall is related to 
the wall shear stress by 

J(p2) = (3.0 f 0 . 5 ) ~ ~ .  

From the space covariances of the wall pressure (Bull, Wilby & Blackman 1963), 
one may construct approximately the two-dimensional (kz, le,) spectrum G(kz, kz) 
of the pressure. It is shown in figure 1 and suggests that the spectral power 
density of the driving force for the velocity fluctuations is almost symmetrically 
distributed with respect to 8 = in. Somewhat more energy is found near 8 = 0 and 
0 = &r than around 8 = in. However, the data are too coarse to provide un- 
ambiguous information about the important asymptotic behaviour of the 
spectrum, 

limit G(kz ,  kz).  
kr flxed 
hk-0 

Experimentally plausible alternate contours are shown as dotted lines. 
From the reported values of the space-time covariance of the wall pressure and 

of its cross-spectral density (Bull et al. 1963; Willmarth & Wooldridge 1962; 
Priestly 1965) it is possible to construct coarse approximations to the three- 
dimensional spectrum II itself. It is perhaps sufficient to indicate the main 
feature of this three-dimensional spectrum: Il (kz, Ic,, w )  reveals a statistically pre- 
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ferred wave speed U, which is a gently decreasing function of frequency and which 
is usually given in terms of the free stream velocity (roughly, 0.60 < U,/Um < 0.80). 
In  other words, the integration of II(kz ,kS,u)  over w contributes little to 0 
except within a small range of ( - w/kz )  centred around U,. 

t 
4.0 

1 *o 

1.0 2.0 3.0 4.0 5.0 
k,6* 

FIGURE 1. The wall pressure spectrum, G(k,, k,) (units of density arbitrary). 

11. The fluctuating velocity field 
For purposes of comparison with the computed solutions, some experimentally 

recorded features of the velocity fluctuations are shown below. Figure 2 is a replot 
of data by Klebanoff (1954) in which the root mean square of the velocity fluctua- 
tions, non-dimensionalized by the friction velocity and the (presumed) turbulent 
pressure intensity are given as a function of viscous distance from the wall. 
u’ is seen to peak at  y* = 25, while w’ reaches a maximum further (y* r 60) 
and v‘ does not reach a maximum until y* z 600. Table 2 gives an idea of the 
square root spectral density ratios as a function of longitudinal wave-number IC,. 
It was obtained from available measurements of the one-dimensional spectrum of 
pressure at  the wall (Bull et al. 1963) and from Klebanoff’s measurements of one- 
dimensional spectra of velocities at  y* = 150 (which is unfortunately the closest 
point a t  which measurements of v’ and w‘ have been reported to date for a 
boundary layer). Because the shape of the velocity spectra is likely to vary 
significantly as the wall is approached, and because there is only fair agreement 
between experimenters about fluctuation levels and spectra these measurements 
should be taken as indicating order of magnitude only, a factor of two error being 
possible, a factor of ten error, unlikely (table 2). 



A linear model for wall turbulence 125 

Finally, both Klebanoff's measurements of root mean square gradients of 
velocity fluctuation (y* = 50) and Grant's (1958) measurements of longitudinal 
and spanwise covariances (y* = 30, y* = 60) indicate that the longitudinal scale 
of the downstream component u is large next to the spanwise scale, which implies 
that in a Fourier decomposition of the velocity field, contributions to the two- 
dimensional k,, kz spectrum occur primarily from high values of the ratio kB/kz. 
The same is true of v while for w the scales are more nearly equal. 

0.4 

0.2 

10 20 30 40 50 60 
FIGURE 2. The distribution of the root-mean square of velocity fluctuations 

near the wall (from Klebanoff 1954). 

kz f, f u  f w  f (uv> 
0.1 1.02 0.170 0.61 
0.4 0.68 0.147 0.65 
1.0 0.75 0.180 Average = 0.490 0.45 
4-0 1.05 0.240 0.40 

10.0 1.44 0.472 0.28 

TABLE 2.fu, fo andf, are the square root of the one-dimensional spectra of u', w', w'normal- 
ized by the square root of the one-dimensional wall pressure spectrum and the factor pu7. 
fu,(k,) is the one-dimensional spectrum of the Reynolds stresses, non-dimensionalized by 
the square root of the product of the spectra of u' and v'. The functions are estimated at  
y* = 30. 

12. Solutions for k, = k, 
Solutions have been obtained for kxS* = 0.1,1*0,4-0 and 10.0 with values of w 

such that the wave speed is equal to the local mean velocity at  values of yX 
ranging from 100 to 1000, which correspond to 16 6 q/u,  < 23. For a boundary 
layer with Reynolds number R,, = 50,000, this corresponds to 

0-52 < KlU, < 0.74 
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and for a boundary layer such as that of Klebanoff with RB* g 10,000 to 
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0.6 < V,/u, < 0.86. 

In all cases, even when the wave speed is larger than the asymptotic value ,8u7 of 
the inner representation for the veolocity profile, the values of y$ given above are 
to be interpreted as those for which the law of the wall yields a mean velocity 
equal to the chosen phase velocity. 

- 4.0 

- 3.0 

- 1.0 

10 20 30 40 50 
Y%IV 

FIGURE 3. The real parts of Zi, d and 8 for k,&* = kz&* = 1.0 and yz = 800. 

- Y*T 

(8 
5 s 
7s - -0.002 

FIGURE 4. The imaginary parts of Q, v^ and 8 for k,&* = k,S* = 1.0 
and y: = 800. 
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Figures 3 and 4 show the real and imaginary parts of the three velocity compo- 
nents for the case lcx S* = 1.0; y,* = 800. The real parts of fi and 2 are positive and 
much larger than their imaginary parts. W($)  is larger than &'(a) and both 
functions are monotonic within the interval 0 < y* < 50. s(8) 9 W(8)  and 8 is 
extremely small. Since4is almost in phase with j3 while Cis about - &rout of phase 
with 9, the Reynolds stress coefficient, C, = - (&G)/(&(Ol is small. These features 
of the solution are typical of all the solutions investigated for which y: > 50 and 
0.1 < kxS* < 4, although there are minor variations in the phases of fi and 2 
(4 may lead or lag fl by fifteen or twenty degrees). There is no tendency for the 
amplitude of the solutions to reach a maximum and no definable region which 
one might identify as a viscous sublayer. Table 3 lists the values of the solutions 

k,S* 

0.1 
0.1 
0.1 
1.0 
1.0 
1.0 
1.0 
1.0 
4.0 
4.0 
4.0 

10.0 

Y: 
500 
800 

1000 
100 
200 
500 
800 

1000 
200 
500 
800 

1000 

WW) 
+ 0.073 
+ 0.064 
+ 0.060 
+ 0.270 
+ 0.095 
+ 0.079 
+ 0.071 
+ 0.071 
+ 0.061 
+ 0.059 
+ 0.057 
+ 0.053 

Y('Lz) 
- 0.029 
- 0.024 
- 0.021 
+ 0.050 
+ 0.016 
+ 0.012 
+ 0.0087 
+ 0*0076 
+ 0.023 
+0.011 
+ 0.009 
+ 0.0025 

W(2) 
- 0.00006 
- 0.00006 
- 0.00007 
+ 0~0010 
- 0~00012 
- 0.00032 
- 0*00032 
- 0.00032 

0 
- 0.00032 
- 0.00036 
- 0.00044 

Y(.^) 
- 0.00014 
- 0.00013 
- 0*00012 
- 0.0040 
- 0.0030 
- 0.0023 
- 0.0021 
- 0.0021 
- 0.0050 
- 0.010 
- 0.0125 
- 0.0210 

a(&) 
+ 0.076 
+ 0.066 
+ 0.063 
+ 0.565 
+ 0.23 
+ 0.140 
+ 0.121 
+0.113 
+ 0.215 
+ 0.142 
+ 0.122 
+0*113 

TABLE 3. The values of 'Lz, 6 and 8 for k, = k,, y* = 30. 

f (&  
- 0.043 
- 0.037 
- 0.035 
- 0.090 
- 0.030 
- 0.0195 
- 0.0160 
- 0.015 
- 0.0015 
- 0'0025 
- 0.0020 
- 0~0010 

at y* = 30. A comparison of these values with those in table 2 (averaged over 
kx and w )  and with those of figure 2 (averaged over kX, Ic,, w )  indicates that while 
the values of $ given by the solutions are only somewhat too small, the values 
of 4 and v" are much too small to be representative of a typical velocity component. 
The discrepancy is a factor of at least 10 for 4 and at least 20 for v". It is readily 
seen from (13) that neither the general shape of fi and 8 nor their order of magni- 
tude are affected if kn Q lcx while of course 8 decreases linearly with Ic,. 

The solutions for %3 and 2 with kxS* = k$* = 10, y,* = 1000, are shown in 
figure 5. For these values of the parameters, the viscous length is small so that the 
effect of viscosity is confined to a region relatively near the wall. Only in such 
cases do the solutions exhibit a viscous sublayer. Note that beyond this sublayer 
$2 and 8 are almost purely real. As a result the Reynolds stresses are extremely 
small. 

Thus solutions of the linearized equations for tan 0 = kJcx < 1 cannot contri- 
bute measurably to the Reynolds stresses which are required to maintain the 
assumed mean velocity profile or to the distribution of u' and v' which is observed. 
On the other hand, as we have seen, experimental observations have established 
that near the wall, the spatial structure of u' and v' is very elongated in the stream- 
wise direction so that the spectra should receive most of their energy from waves 
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such that tan8  $ 1. It is thus necessary to determine what happens to the solu- 
tions as kJk, becomes large. According to (13 b)  

Figures 6-8 are plots of (a, -a,) in these groups. Figure 6 shows moderate and 
high wave-numbers and moderate wave velocities; figure 7 small wave velocities; 
figure 8 small wave-numbers. The graphs reveal that the magnitude of a for large 

0.14 

0.12 

<g 
8 0.10 

5 
p 0.08 
8 

a 

h 

006 

0.04 

0.02 

0 
3 

3 -0.01 

"ss -0.02 

3 

m - z 

FIGURE 5. The real and imaginary parts of ti and & for 
k,6* = k,S* = 10andyZ = 1000. 

values of 8 rises to a peak which is found for 25 < y* < 50. The peak is closer to 
the wall for large kX6* and large y,* and recedes with increasing values of both 
parameters, but considering that the wave-number range shown is a 100 to 1, the 
location of the peak is dispersed relatively little by these parameters. The fact 
that $(GI - 8,) achieves its peak value for smaller values of y* than 9(&, - a,) is 
also significant; since 8 is in general almost purely imaginary, the Reynolds 
stresses are contributed primarily by the product $(a) and Y(G). In  general 
9(&, - G1) is negative which indicates that the phase angle of .ii: with respect to 9 
changes llrom a small value for 8 < in- to  a value exceeding &r for 8 + in. The 
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value of 0 for which .li is purely imaginary generally increases with y* for given 
values of k, and w and in some cases the real part of & does not change sign for 
sufficiently large values of y*. 

We have used (9), (10) and (11) to compute 0, G, 0 and the Reynolds stress 
coefficient C, for several values of k,S* after choosing a value of 8 for each case 

8 16 24 32 40 48 

-0.1 

- 0 2  

- 0.3 

I -0.4 

h 

<$ 

T S "  g- -0.5 

- 0.6 

- 0.7 

- 0.8 

0.032 

0.024 
4 

I 
3 

p 0.016 

0.008 

I I I I I I 

. *. .. .. 
. . a *  . . . . , . . . . '. ... *. -.. 

k,S* = k,S* -vl "-.. 
1.0 500 
1-0 800 
1.0 1000 

500 
4.0 800 
8.0 1000 

___-  
_ _ _ _ -  

...... . . ... 4.0 
- - - - - - - - 
- -- 

8 16 24 32 40 48 

YU,lY 

FIGURE 6. The asymptotic shape of Q for values of k,/k,. 

which yields reasonable values for .li. The results are shown in table 4. According 
to this table, C, decreases systematically a5 k, increases from k, = 0.10 to 
kz = 10.0. In  general, C, also decreases somewhat at fixed values of k, S* as y,* is 
increased. Equations (12a, b )  show that if 8 is large enough, the phase angle 
between &and 0 and therefore the value of C, remain approximately the same. The 
range of values of C ,  and the tendency for this coefficient to  decrease with 

9 Fluid Mech. 29 
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increasing longitudinal wave number are in satisfactory agreement with the 
experimental results of Klebanoff. 

It has been seen that the amplitude of .ti, 8 and 0 has a measure of arbitrariness 
since it depends on 8. This is also true of the ratio &/a. However the ratio O/t2 
varies little with 8 for large values of 8. According to table 4 this ratio is generally 

10 20 30 40 50 60 
0 

-0.10 

;$ -0.20 

I 
3 

2. 
@ -0.30 

- 0.40 

+0*16 

f-0.12 

+0.04 

0 

I 

. -' 

, 

I I 
1 I I I I I I 

10 20 30 40 50 

Y%/V 

FIGURE 7. The asymptotic shape of ti for large values of k,/k,. 

quite small. It varies from about 1 yo for k, = 0-1 to about 36 yo for kz = 4.0 
(y,* = 500). According to table 2, while the latter figure is reasonable, the former 
is not and for the bulk of the solutions, the ratio @/.ti must be considered too small. 
There may be some doubt about the experimental distribution of v' for y* < 30 
and a fortiori, about the longitudinal spectrum of this quantity in that region 
(i.e. Klebanoff measured v' only for y* > 50 and a v' spectrum only for y* > 150). 
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But there is no doubt about the experimental distribution of (uv)  and little 
doubt about that of u' so that the smallest possible values of v' for y* < 50 are 
known to be a t  least half those shown on figure 2 .  All the solutions indicate that 
as y* increases, the ratios of 0li2 and a/& increase and equations (14) imply that 
a typical wave-number for component 8 is characterized by a smaller angle 8 

Y % I V  

Yt = - 
500 

800 - 1000 - 

- 

I 

-0002 - 
<$ 

I -0004 
r( 

-0006 
g 

$0024 

<$ 
+0016 

+0008 

8 16 24 32 40 48 

Y % I V  

FIGURE 8. The asymptotic shape of .Li for large values of k,/k,.k,S* = 0.1. 

than a typical wave-number for component i2 and 0. Both of these results are in 
accordance with experimental evidence. Representative solutions indicate that 
the phase of v" lags that ofj3 very nearly by &r. Thus according to the linear model, 
the expression a/ay (pv) ,  a transport term in the equation for turbulent kinetic 
energy, is very small. The experimental evidence is inconclusive on this point. 
The measurements of (2321) and (pu)  covariances by Willmarth & Wooldridge 
(1963) and by Bull et al. (1963) were made for larger values of y* then those con- 
sidered in the analysis while measurements by Kawamura (1960) made in a wind 
tunnel suffering from a high noise level at  an artificially low Reynolds number 
disagree with those of Bull et al. and Willmarth & Woolclridge in a number of 
important respects. At y* = 180, Willmarth & Wooldridge found the phase angle 
between j3 and v" to be as described above, while E led j3 by an angle slightly 
exceeding in. We note that measurements of (pu)  in ordinary wind tunnels at  

9-2 
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small values of y* are not especially difficult and it is hoped that such measure- 
ments will be published in the future. 

In  a paper which reached us after this work was completed, Sternberg (1965) 
examines the inner wall layer by using equations equivalent to (6). His calcula- 
tions consist of a machine integration of these equations. Sternberg’s discussion 
of the outer boundary conditions he used for this integration is unclear to us. 
These conditions may be different from ours. Not enough details are given to 

k,6* = 0.1 
y: = 1000 

k,/k, = 10 

k,6* = 1.0 

k,/kx = 3.0 
y t  = 100 

k,&* = 1.0 
y,* = 500 

k,/k, = 5.0 

k,&* = 4.0 

k,/k, = 5.0 
y: = 500 

Y* 
10 
20 
30 
40 
50 

10 
20 
30 
40 
50 

10 
20 
30 
40 
50 

10 
20 
30 
40 
50 

zi‘ &j’ I 

0.32 0.26 
0.51 0.51 
0.69 0.82 
0.78 0.90 
0.77 0.99 

0.34 0.375 
0.70 0.750 
0.97 1.05 
1.10 1.36 
1.13 1.70 

0-277 0-31 
0.568 0.53 
0.736 0.70 
0.814 0.83 
0.750 0.92 

0.31 0.36 
0.73 0.56 
0.95 0.71 
0.93 0.85 
0.79 0.93 

2 
0.00078 
0.0031 
0.0067 
0.011 
0.017 

0.0015 
0.009 
0.020 
0.036 
0.060 

0.0055 
0.0134 
0.030 
0.048 
0.060 

0.022 
0.067 
0.13 
0.2 1 
0.29 

CR 

+ 0.65 
+ 0.82 
+ 0.84 
+ 0.82 
+ 0.81 

+ 0.20 
+ 0.382 
+ 0.540 
+ 0.692 
+ 0.725 

+0-11 
+ 0.33 
+ 0.40 
+ 0.38 
+ 0.30 

-0.15 
+ 0.115 
+ 0.140 
+ 0.080 
+ 0.065 

TABLE 4. The amplitudes of zi, 2, &j and the Reynolds stress coefficients for 
large values of 0. 

compare the two computations quantitatively. Sternberg verified numerically 
that certain features of the solutions did not depend critically upon the outer 
boundary conditions and these features agree with the corresponding results 
discussed above. For instance, the phase relationship between f~ and Q, its depend- 
ence on 8 and the dependence of the ratio \.iT\/lQl upon 8 are qualitatively very 
similar in our and Sternberg’s work. The same is true of the dependence on 8, of 
the ratio of the pressure amplitude to that of the downstream component Q. 

13. The dynamics of a typical fluctuation according to the linear 
approximation 

As we have seen, according to linear thecjry, typical turbulence patterns near 
the wall are greatly elongated in the streamwise direction because the effective 
impedance of the layer near the wall is not isotropic (cf. (13)), the ratio of the 
response 141 or Ii71 to the forcing function k@ increasing asymptotically as tan8 
(8 is the angle between the direction of the force and the streamwise direction). 
It is possible to account simply for the main features of the dynamics of such 
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elongated eddies, including the result that a peak is reached for the amplitude of 
Q for small values of y*. 

For high values of 0, afi/ax < afilaz and a&lax < aO/az so that one may write 
the x and z momentum and continuity equations as 

d2Q i 1 dU 

d2G i ilc 

( u + k x U ) Q  - -G) 

(u+lczU)G = -217, 

dy2-; v dY 

d y 2 - i  Y 

The asymptotic form (13) embodies the same approximation. These equations 
imply that the spanwise pressure gradient is the only forcing function of import- 
ance. Such a gradient causes a spanwise velocity fluctuation which in turn, 
according to the continuity equation, causes a normal velocity 47 proportional to 
kxG, i.e. to kz. Now v" which is multiplied by the mean shear dUldy  in the 
x-momentum equation then acts as the main forcing function for Q fluctuations. 
Since Q vanishes at y* = 0 and since the exponentially increasing homogeneous 
solution of G is rejected, Q would be identically zero according to the approxima- 
tion, were it not for this forcing term. On the other hand, the mean shear is a very 
rapidly decreasing function of y* so that the product 6 aUldy is a function which 
is zero at the origin, rises to some amplitude as 5 increases and then decays again. 
The solution for i2 then decays also with y* at a rate which depends on the viscous 
length which is characteristic of the parameters p, u, and kx. Thus according to 
the linear equations 42 is principally due, not to the pressure gradient aplax but 
to the displacement of the mean profile by the normal component 0 which is 
generated by the spanwise component of the pressure. The equation for Q is thus 
related to the model used by Prandtl(l925) in connexion with his mixing length 
theory to explain the presence of Reynolds stresses. Also, Kistler (1962) had 
suggested not only that u might not be too closely related to ap/ax but also that 
the experimentally observed maximum of u' near the wall might be related to 
the lateral displacement of the highly sheared mean flow. 

14. Summary of the results 
The linear equations provide a model of turbulent velocity fluctuations near 

the wall which in many ways is strongly suggestive of the observed. features of 
these fluctuations. In  particular they provide a simple reason (cf. (13) and 8 13) 
why the longitudinal fluctuations experience a peak in amplitude close to the 
wall, why the turbulent structure is strongly elongatedin the direction of the mean 
flow, why the structure of u and v is more elongated than that of w. They yield 
solutions which assign plausible phase relationships between i2 and 5 (cf. table 4) 
and thus allow the fluctuations to extract energy from the mean stream. They 
describe at  least qualitatively the close relationship between the strongly curved 
mean velocity profile near the wall and the turbulence; this strong curvature is 
both the cause of Reynolds stresses (by allowing a, rapid growth of the part of u 
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which is in phase with v) and the result of these stresses. Many qualitative 
features of the flow are echoed in the solutions. For instance the known fact that 
Q and B become more nearly orthogonal in time as k, increases and which has been 
ascribed to the tendency of small eddies toward isotropy (a non-linear mechanism) 
turns out to be also a property of the linear solutions (table 4). 

Some of the weaknesses of the solutions presented are: (a )  the rise of 42 with y* 
is somewhat less rapid than experiments suggest (by a factor of 1.5 to 2); (b)  the 
magnitude of 6 seems too small unless the relevant values of 8 are very large: in 
either case the ratio @/a is smaller by a factor of 2 to 4 than can be inferred from 
the data. (a )  and ( 6 )  taken together imply that the Reynolds stresses generated 
by the solutions would fall short of those necessary to maintain the mean profile. 

The ratios of the amplitudes of the velocity components to that of the pressure 
become unbounded as 8 + &r. This does not necessarily mean that the resulting 
velocity spectra should be unbounded since it is experimentally plausible that 
n(kx, k,) -+ 0 as ks+m at a rate sufficient to yield finite values for E(kx,  00). We 
note that the analysis which has been presented is based on the assumption that 
ap/ay is negligible, which is increasingly inaccurate if k is allowed to become 
large. Then for every k, the predictions of the theory may not be extended to 
arbitrarily large kg. 

15. The role of the non-linear terms 
The problem has been formulated in such a way that the solutions for Q, v“, 65 

must tend to solutions of the full equations for small enough values of y*. The 
relative importance of the non-linear terms as y* increases may be assessed 
coarsely by referring both to the experiments and to the linear solutions. Con- 
sider first equation (1 a)  for u. The three omitted terms are very nearly 

The first term should be small in general since the downstream gradients of u are 
small, next to spanwise gradients and the magnitude of u and w is comparable. 
The magnitude of the remaining two terms is probably about the same. One may 
view these terms as forcing functions along with p-l ap/ax and v a Ujay. According 
to previous discussions we may obtain an estimate of non-linear effects in this 
equation by comparing these terms to the dominant linear term vaU/ay. The 
solutions for lii have been found to increase monotonically up to y* 30 so that 
{(au/ay)2): is not likely to exceed significantly dldy {u2)4. From extrapolations of 
data from Klebanoff and other sources one may estimate that up to y* = 30, 
(V aulay - {v aujay)) does not exceed 20-30 yo of v aU/ay. AS y* increases, the 
ratio of mean shear to turbulent shear ((au/ay)2)3 decreases steadily. It is about 
unity for y* = 80 and about t or less for y* = 200. Thus while neglect of the non- 
linear terms may be barely tolerable at y* = 30 it seems indefensible for y* = 200. 
In  the spanwise momentum equation, the two non-linear terms wawlay and 
w awl& should be compared to the pressure gradient p-1 ap/az. I n  view of the 
facts (cf. Grant 1958; Klebanoff 1954) that w’ is somewhat smaller than ZL’, 
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that awljay is noticeably smaller than au’lay near the wall, and that the structure 
of w is a good deal less elongated than that of u, it is likely that these terms are 
no more important in the spanwise momentum equation than their counterparts 
in the streamwise equation up to y* = 30. 

For Fourier components such that the value of 8 is small, it is almost certain 
that the non-linear terms cannot be neglected even for very small values of y”. 
This would seem to be a consequence of the strong dependence of velocity 
amplitudes on the ratio Ic,/E,. Non-linear terms enter the transformed equations 
as convolution integrals of the form 

sf(k’, o’)g(k-k’,w-w’)dk’dw’,  

where f and g are typical Fourier components of velocities or velocity gradients. 
For Ic,/k, < 1 the amplitudes off(k, w )  and g(k, w )  are small but k’ and k - k may 
evidently be such that while their inclination angle 8 to the kz axis is close to &r, 
their sum k is such that r%,llc, ,< 1. 

The plausibility of some of the main features of the solutions which have been 
presented suggests that a similar analysis for a boundary layer along a compliant 
wall might reveal whether and under what circumstances a compliant wall inhibits 
or amplifies turbulence. 

The authors wish to thank Dr T. Brooke Benjamin for summarizing some 
general results of the present work (as well as his own) in a survey lecture 
for the 11th Congress of Applied Mechanics (Munich, 1964), for discussions, 
and for suggestions regarding the draft of this paper. 
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